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We calculate the flow induced by a vortex pair in a viscous fluid, which is otherwise 
at  rest, in the presence of a plane boundary. This may be either a no-slip or a stress-free 
boundary. The phenomenon of rebound of the vortices from the boundary occurs for 
either type of boundary, and an explanation for this is offered in terms of viscous 
effects. 

1. Introduction 
In  this paper we are concerned with the unsteady fluid motion which is induced 

when a vortex pair moves in an incompressible viscous fluid towards a plane 
boundary. The vortex pair a t  the initial instant is represented by two inviscid line 
vortices and the line which joins them is parallel to the boundary surface, which may 
be either a rigid boundary a t  which the no-slip condition must be satisfied or a free 
surface corresponding to zero shear stress. 

In  § 2 we first of all construct an asymptotic solution to describe the early stages 
of the motion. For the case of a no-slip boundary this is dominated by the rapid 
diffusion of vorticity from the boundary, with its attendant displacement effect, and 
the rapid diffusion of vorticity from the neighbourhood of the line vortex; for the 
case of a free surface only the latter is involved. The solution is carried beyond the 
initial stages via a direct numerical integration of the unsteady Navier-Stokes 
equations. The method which is used is also described in 8 2 and is based upon the 
split-operator idea in which an iteration takes place between the equations for the 
vorticity and stream function. The former is parabolic and an alternating-direction 
implicit method is used for its solution, whilst the latter is elliptic and solved by 
successive-point over-relaxation. 

The results of our numerical calculations are described in 9 3 for values of a suitably 
defined Reynolds number up to 150. The principal features are the decay of the 
vorticity, and the trajectory of the vortex centre. Free-flight observations (Dee & 
Nicholas 1968 ; Tombach, Crow & Bate 1975) indicate that the trailing vortices behind 
an aircraft move at first toward the ground, as on an inviscid trajectory, and then 
away from it. Laboratory experiments by Harvey & Perry (1971), Barker & Crow 
(1977) and Wickens (1980) confirm this behaviour, with the experiments of Barker 
& Crow, carried out in water, demonstrating that the phenomenon also occurs a t  a 
free surface where the shear stress vanishes. For a rigid boundary a satisfactory 
explanation for the vortex rebound has been given by Harvey & Perry based upon 
flow separation. However, for the case of a free surface that explanation is not valid, 
and Barker & Crow suggest an inviscid argument based upon a finite vortex-core size ; 
this conjecture is found by Saffman (1979) to be unacceptable. It is our view that 
the rebound phenomenon owes its origins to viscous effects regardless of whether or 
not the boundary is one of no-slip or zero shear. Similar numerical calculations to 
ours have also been carried out by Grove (1981) which also demonstrate the rebound 
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effect. However, a direct comparison between the two is not possible owing to 
differences in the initial conditions. 

2. Governing equations and solution procedure 
As we have indicated above, we consider the situation in which the flow due to 

an initially inviscid vortex pair in the presence of the plane boundary y’ = 0 develops 
with time under the action of viscosity. With reference to Cartesian coordinates (x’, y’) 
the vortices, of strength f T, are situated a t  (+a ,  h).  If the fluid has density p and 
kinematic viscosity v we choose d ,  d2/r, T/d, pT2/d2 as typical length, time, velocity 
and pressure respectively, so that the dimensionless governing equations, for our 
two-dimensional flow, may be written as 

av 1 
at R 
- + ( v . V ) v  =-Vp+-VZv, 

where R = r/u is the Reynolds number of the flow, p is the pressure and v = (u ,  v )  
the velocity vector. I n  much of what follows it proves convenient to work not with 
the primitive variables of (2.1) and (2.2) but with the stream function and vorticity. 
Thus we introduce the stream function lC. such that 

and then with the vorticity 6 = (0, 0, 5) we have, upon eliminating p from (2,1), and 

(2.4) 

using (2.2), 
1 ac -+ v . (VC) = -vy, 

at R 
with 

V2$ = -(. 

The boundary conditions required are as follows. At t = 0 we have the flow due to 
an inviscid vortex pair throughout the flow region. For t > 0 we have $ = 5 = 0 on 
x = 0 , O  c y c co, with $ = 0 on y = 0, x 3 0. I n  addition, for a solid boundary we 
require the no-slip condition to be satisfied a t  y = 0, which we interpret as a condition 
on 5 ifi $2.2;  by contrast, for a stress-free boundary a t  y = 0, which models a clean 
undeformed free surface, we have simply 5 = 0. 

2.1. The initial $ow development 
At the initial instant t = 0 the flow is that  due to isolated line vortices at ( 1 ,  f h / d ) ,  
together with a vortex sheet on y = 0. The effect of viscosity is to diffuse vorticity 
rapidly from these singular regions, and we now construct solutions which dcscribe 
this process. On account of symmetry we need only consider the solution in x, y 2 0. 
It proves convenient to develop the solution separately in the viscous wall region, 
the viscous neighbourhood of the line vortex, and an ‘outer’ region within which the 
solution is essentially an inviscid one. The stream function identified within each of 
these regions is identified by a superscript ‘ w ’, ‘v ’ and ‘0 ’ respectively. In  each region 
the stream function is conveniently represented, for small values of t ,  in the form 
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and asymptotic matching between the different regions is carried out. I t  should be 
emphasized that the coefficients in (2.6) may contain terms O ( R n ) ,  so that in the limit 
R + co the expansion (2.6) becomes that which is familiar in classical boundary-layer 
theory. 

We consider first the interaction bet,ween the wall layer for the case of a no-slip 
boundary and the outer inviscid region, and finally consider the solution in the 
neighbourhood of the line vortex. This procedure is permissible since, as we shall see, 
the terms up to and including O(t/R) in the vortex region bring about no modification 
to the outer inviscid flow. 

The leading term in the outer solution, represented in the form (2.6),  is given simply 
as 

which corresponds to a line vortex at, x = xo(t), y = yo( t ) ,  where 

xf Y f  (2.8) 
dt 4ny,(xf + y f )  ' dt 477x,(xf + y f )  ' 

with z,(O) = 1 ,  y,(O) = h/d.  The solution (2 .7) ,  with ( 2 . 3 ) ,  implies a velocity of slip 
a t  y = 0 given by 

dY0 - ~- - dx, - 

For the wall layer we write @ = 2(t/R)4@cw) and expand $(w) as in (2.6).  Thus with 
$iw) = U ,  fo(7), where 7 = ty(R/t)i, we have from (2.3)-(2.5) 

with (2.10) 

where the condition a t  7 = co ensures a match with the outer solution, and a prime 
denotes differentiation with respect to 7.  The solution for f o  is the classical solution 

(2.11) 

We can see from (2.11) that fa-7 + -77-4 as 7 + 03 : this implies that the next term 
in the outer expansion, of the form (2.6), arises from a source distribution on y = 0 
of strength 2n-iaUo/ax per unit length. Thus with Vz$p) = 0, from (2.4), (2.5) and 
with $.I") = 0 on x = 0, $.I") -0 as x2+y2+ CO, we have 

(2.12) 

which makes a contribution U,(t/R)i to the velocity of slip on y = 0, where U ,  is given 

(2.13) 

and the Cauchy principal value of the integral in (2.13) is to be understood. Thus 
for our second term in the expansion for $(w) we write $1") = U ,  fl(7) so that, again 
from (2.3)-(2.5) we have 

(2.14) fi"' + 27f;/2f; = - 2, 

jl(0) =f;W = 0, f;(cof = 1, 

14 P L M  129 
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fl = 7+$nirz erfc 7-he-v2-+n4 erfq. (2.15) 

We note that fl -7 --* -in; as 7 -+ CO, which shows that the wall layer contributes 
a source effect a t  O ( t / R )  to the outer solution. Thus since it can be shown that 21.p) 
is a harmonic function we have 

(2.16) 

The solution in the outer region is now complete up to and including terms O ( t / R ) .  
However, (2.16) implies a slip velocity U,( t /R)  a t  y = 0, with 

(2.17) 

where again the Cauchy principal value is to be understood. To complete the solution 
in the wall layer to  this order we now write 

The first two terms of (2.18), with coefficient R, are recognizable as the terms which 
arise in the infinite Reynolds numbeq or boundary-layer, limit in the study of 
impulsive flows; the last term is required to match the slip velocity (2.17). The 
remaining term arises from contributions from the right-hand side of (2.4) and 
because of the necessity to match with the outer solution. In  this latter respect we 
note that the inner expansions of both 21.p) and +.I“) yield contributions with which 
f,, must match. The equations satisfied by f z i ,  i = 0, . . . , 3 ,  are, using (2.4)-(2.6), 

where 

together with boundary conditions 

(2.19) 

(2.20) 

The asymptotic forms for fizz and flz, are as dictated by the matching requirement. 
For f2, we have, as given by Blasius (1908), 

from whichf,, is obtained by quadrature, and the solutions of (2.19) for i = 1 , 2 , 3  
are given by 
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The solution for t+k(w) is now complete to O(t/R). 
We consider next the solution in the neighbourhood of the isolated vortices under 

the influence of the outer solution As before, we need only consider the flow 
in the first quadrant, and it will be necessary for us to ensure, as asserted above, that 
the outer flow we have calculated is not modified up to O ( t / R ) .  It proves convenient 
a t  this stage to work with coordinates with origin a t  the vortex centre (Xv, Yv), which 
is defined as the position a t  which the vorticity has a local maximum. Quantities 
associated with these coordinates are denoted by an overbar and we note that 
(2.3)-(2.5) otherwise remain unchanged. It also proves convenient to write 

where f 2  = 3+?, and then to write 

where a dot denotes differentiation with respect to  t and the subscript 0 denotes 
Z = y = 0. An expansion of the form (2.6) is already available for $(O)  from our 
discussion of the outer solution, and we now assume that (Xv, Yv) can be expanded 
in a similar manner. We also anticipate that an appropriate viscous coordinate is 
7 = aF(R/t)i. We next write the outer solution (2.22) in terms of the inner variables 
(q ,  O), where 8 is a conventional angular coordinate measured from y = 0, to give 

where we have written 

(2.24) 

as the components of velocity a t  the vortex centre. The expression (2.23) now 
provides an outer expansion for the inner-vortex solution. 

I n  addition to working with an expansion of the form (2.6) for $(v) in the vortex 
region it is convenient to introduce the vorticity. Thus with 5 = $(R/t)  c(v) and an 
expansion of the form (2.6) for Fv) assumed, we note, from (2.23), that we may expect 
the leading term to be independent of 8. Thus we have, from (2.4), 

14-2 
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with solution, which matches with (2.23) as 7 + co, 
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as for example in Lamb (1932). 
For the next terms in our expansions for $(v) and c(v), let us write 

&v) = ylS(if) s inn6--y lC(~)  c o s n ~ ,  

~p = zIs(ij) sin ne-z , , (q)  cos ne, j 

(2.25) 

(2.26) 

where the unknown functions of 7 satisfy 

Rn - 

1c 

and a prime now denotes differentiation with respect to q. For 7 4 1 it can be shown, 
if $p), civ) are to remain finite as i j  + 0, that all four unknowns behave like ai i j n ,  where 
ai, i = 1 ,  ..., 4, are constants to be determined. Now i t  is clear from (2.23) that the 
case n = 1 is of interest to us a t  this stage, and since @')' is required to vanish a t  
?j = 0, two of the constants ai vanish immediately. As a consequence the homogeneous 
system ( 2 . 2 7 )  admits only a trivial solution and we conclude that go = = 0, which 
in turn, from (2.24), means that X,, Y ,  may be identified with xo, yo in (2.8),  as 
expected. The final terms which we consider in our expansions for $(v) and c(v), namely 
@p), cp), may also be split in the manner (2.26), in order to accommodate the 
matching condition (2.23) where both the cases n = 1, 2 are now required. The case 
n = 1 leads, by arguments set out above, immediately to I / ,  = I/, ~0 so that - X,, 

are determined from (2.24). For n = 2 (2.27), appropriate since @I") = @') = 0, 
must be solved numerically for YZs, , and ZZs, subject to  the matching condition 
(2.23), and the requirement that  algebraic dccay at infinity in the vorticity be 
suppressed. Athough (2.27) are independent of t ,  that  variable does apper para- 
metrically in the solution through (2.23), noting the dependence of $6") upon t .  The 
results for Xo,l and show that, to this order, the vortex centre moves with a 
velocity determined from thc outer inviscid flow. We also see that the asymptotic 
form for $1" contains terms as i j  + co, in addition to those required to match with 
(2.23), which are O(?-2 sin 28, q-z cos 26). These terms will require a modification to 
the outer inviscid flow a t  O{(t/R)?-}, which, as we have previously asserted, does not 
affect those terms already obtained in the outer region. 

The treatment outlined abovc is for the initial flow development over a no-slip 
surface. For the stress-free case the situation is somewhat simpler owing to the 
absence of the wall layer with its attendant displacement effect. 

__ 

2 2. Numerical procedurp 

Our aim is to solve (2.4) and (2.5) in the first quadrant 2, y > 0 by a finitc-difference 
approach, subject to the spatial boundary conditions stated a t  the beginning of this 
section, for t > t,, where the solution at t, is obtained from the small-time solution 
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developed above. Kote that (2.4) is written in conservation f‘orm. thc importanvc of‘ 
which is discussed, for example. in Woache (1972). 

The first difficulty we anticipate is tha t  of the application of boundary wnditions 
a t  infinity. One obvious method is to apply these conditions, as they stand, on a finite 
outer boundary. However, Bayliss, Gunzberger & Turkel ( 1982) have shown that  
large errors can be introduced into the solution by this approximation. \Ve therefore 
introduce a transformation of the coordinates (.c. ?I)  onto a new set of coordinates 
( X ,  Y), where 

i X = n(1 - p p b x ) ,  

Y = nr(l  - r - b ” ) .  
( 2 .28 )  

where a ,  b are constants t o  be chosen. Hence the infinite region 0 < .?: < CO. 0 < y < co 
is mapped onto the finite region 0 < X < a ,  0 < Y 6 a.  This transformation will also 
enable us, when a finite-difference mesh is set up, to  cwncvntratc grid points in thc 
regions where the gradients are initially large, namely in the vortcx region and ncar 
the wall. Using (2.28), the governing equations (2.4) and (2.5) now become 

-+bZ(a -X) (a -  85 at Y )  [&( - <- c g) -- ( 5- 3 1  = p*5. (2.29) 

and 
V 2 $  = -5. (2.30) 

where 

a Y* 
The spatial boundary conditions now becwme $ = 5 = 0 on X = 0 and X = a ,  
0 < Y < a and Y = a ,  0 < X < a ,  with y? = 0 on Y = 0, 0 < X < n .  A cwndition for 
6 on Y = 0 remains to  be derived for the vase of a no slip boundary, for the stress-free 
case we have simply [ = 0 on Y = 0, 0 < X < a. 

We now set up a uniform rectangular grid in the finite ( X .  ).’)-plane, of‘ dimensions 
M x N ,  so that  the grid spacings AX and A Y  are defined as  

a 
A X = -  

M - I ’  
U 

A Y = -  
12’- 1 

(2.31) 

We must first set up the initial conditions at time t = t, on this mesh. This is done 
by first calculating the vorticity 5 from the initial solution describcd in Q 2 1 .  Prom 
this distribution of < the stream funrtion @ is obtained at the initial time t ,  by a direct 
numerical integration of (2.30) for 1c, in the manncr outlined below 

We now solve a finite-difference approximation to  (2.29) and (2.30) on the 
finite-difference mesh so tha t  the values of $ and 5 at each grid point, name13 1crz,, 
and 5 t , j ,  1 < i 6 M ,  1 <j < N ,  are determined for t > t,. As (2.29) is parabolic in 
time we can march the vorticity forward in t ,  with steps of size At, whilst ensuring 
that  the elliptic equation (2.30) and the boundary wntlitions are satisfied throughout. 
I n  setting up  finite-difference approximations to  (2.29) and (2.30) we use central 
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respectively, and similarly for derivatives with respect to Y ; similar expressions 
approximate the spatial derivatives of 5. 

We solve the finite-difference approximation to  (2 .29 )  by using an alternating- 
direction implicit (ADI) method. Let the solution for & a t  time t be <ti; we then 
wish to obtain the solution at the interior grid points a t  time t + A t ,  Ct;l, 

2 < i 6 M -  1, 2 < j < N -  1 : we assume, a t  this juncture, that 11. and all boundary 
values are known at both t and t + A t .  The AD1 method then involves splitting the 
time step into two equal half-steps and advancing the vorticity over each half step 
in turn, so that an intermediate solution, Ct,Ji, a t  t++At is obtained. Over the first 
half-step, from t to  t +$At,  X-derivatives of < are expressed implicitly, a t  t + $At, whilst 
the Y-derivatives of C are assigned their values a t  time t .  A solution for <t,Ji can then 
be obtained as described below. Over the second half-step, from t+$At to t + A t ,  
X-derivatives are now assigned their newly calculated values at t+BAt, and Y- 
derivatives are expressed implicitly, a t  t + At. We can then obtain Cty. I n  each of these 
two steps the values of $ i , j  and the boundary conditions are evaluated a t  the 
centres of each half time step, t +*At and t +$At, using linear interpolation. Written in 
finite-difference form the above gives 

for the first half time step and, for the second half time step, 

(2 d i d M -  1, 2 < j d N -  l ) ,  (2 .326)  

where A = a -  ( i-  1 )  AX and B = a-  (i- 1 )  A Y. Each of (2 .32 )  results in a tridiagonal 
system of algebraic equations, which are solved in the usual way be forward and back 
substitution. 

When advancing the vorticity transport equation one time step from time t through 
(2 .32 )  as described above, we assume that I,@$’ and, when the no-slip boundary con- 
dition is enforced, the wall vorticity l$+,l, 2 < i < M-1, are known at time t + A t .  
As this is, of course, not immediately true the following procedure is pursued. First 
estimates of $E;l and ct:l are made from extrapolating from the two previous time 
steps. Using these estimates and the complete solution a t  time t ,  namely @ti, &, 
(2 .32 )  is solved to  obtain a first estimate of CtJ’. Solution of (2 .30 )  and evaluation of 
the wall vorticity, in the manner described below, gives a revised estimate of $t,J1 and 
@,:l. These new values can then be used to again advance the solution for 5 from time 
t ,  and a better estimate of $t;l and ctJ1 is thus obtained. This iteration within a 
time step continues until successive iterations differ by an amount which is less than 
a tolerance set for the calculation. For the case of the stress-free boundary condition 
Ci, = 0, 1 < i < M ,  i t  is only necessary to iterate on the stream function. The above 
method ensures that the numerical procedure is accurate to  O(AXz, A Y2 ,  At2) .  

The linear elliptic equation (2.30) is solved by the successive point over-relaxation 
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iterative method applied to  the following finite-difference form of the equat,ion : 

(2.33) 

When a no-slip boundary condition is applied, the wall vorticity must be calculated 
to ensure u = v = 0 on Y = 0. This is done using Woods' (1954) second-order method, 
which, on being derived in the ( X ,  Y)-plane, gives 

- 6a3b2 a 
Ci, 2 ( 2  d i d M -  1 ) .  

ci,l = 2aAY2+3AY3 ' i ' 2 - ( 2 a + 3 A Y )  

We therefore have, in the above, a procedure for numerically integrating hhe 
governing equations (2.4) and (2.5) forward in time, commencing a t  t = t,, and 
ensuring that the boundary conditions are satisfied for all t > t, within the finite- 
difference approximation. 

3. Results and discussion 
To initiate a numerical integration of the governing equations (2.4) and (2.5) we 

must first choose the initial time t, from which we can commence the time-marching 
scheme. This choice of t ,  is dependent upon two factors. Firstly, the asymptotics of 
3 2.1 require that both t ,  and t,/R are small, for a given Reynolds number, for the 
expansions to be valid. Secondly, having selected the dimensions of the grid ( M  x N )  
in the transformed plane, t,/R must be chosen such that, on setting up the initial 
vorticity distribution, the rotational regions are sufficiently well represented with 
respect to the number of grid points defining them. For all the results presented below 
M = N = 51, so that, having chosen a = 5.0 in ( 2 . 2 8 ) ,  AX = A Y = 0.1 from (3.31). 
At this stage we are still a t  liberty to choose the parameter 6 in (2.28). As stated 
previously, b can be chosen to vary the concentration of grid points in the (x, y)-plane 
in regions where gradients are initially large. We must also ensure, however, that  the 
far field is adequately represented. 

For example, at R = 50 we have chosen t, = 025. This implied value of t , /R  clearly 
satisfies the second of the above requirements. To check the first requirement we have 
carried out a numerical integration for t > t, and compared the results with the 
asymptotic expansions. Comparison was made through the total vorticity in the 
flow-field defined as 

C is a curve enclosing the region 8, where S is the first quadrant x ,  y 2 0. From 
3 2.1, (2.5) and (3.1),  the asymptotic expansion for rT is given by 

rT was calculated from the numerical results by the contour integral in ( 3 . 1 ) ,  as v = 0 
on parts of C, so simplifying the calculation. Figure 1 shows the total circulation for 
the no-slip boundary condition for R = 50 from ( 3 . 2 ) ,  and from a numerical 
integration for t > 0.25 for both 6 = 0.5 and b = 0.375 to also motivate the choice of 
this parameter. As can be seen, the choice oft, = 0.25 was valid as the results from 
the numerical integrations for t > t, remain close to those obtained from the 



418 8. J .  Peace and N .  Riley 

L I I I I I 
0 0-2 0.4 0.6 0.8 1 .o 

t 

FIGURE 1. The variation of the total vorticity in the flow field for the case of a no-slip boundary 
with R = 50: -, asymptotic result (3.2); -.-.- , numerical solution with b = 0.5; - - -, 
numerical solution with b = 0 3 7 5 .  

asymptotic solution. Further, the agreement is to  within 1.5 yo forb = 0.5 but less than 
0.5 Yo for b = 0.375, for t d 1.0; this latter value was chosen for all our calculations. 
Similar considerations for other Reynolds numbers resulted in a choice oft, = 0 5  for 
R = 100 and t, = 0.75 for R = 150. 

Two tolerances need to be set in the numerical integration. In  the iterative solution 
of (2.30) through (2.34), the iteration was terminated when 

and in the time iteration of the stream function, and hence the vorticity, and where 
appropriate the wall vorticity, a solution was deemed to have been reached when a 
relative accuracy better than 1 0-3 was obtained between successive iterations at all 
grid points. These tolerances were found to give a t  least three-significant-figure 
accuracy in the results. The time step used in all the calculations was At = 0.05. This 
value of At required a t  most five iterations per time step but mostly two were 
sufficient. A larger value of At was found to give the same results, but a larger number 
of time iterations were required resulting in no reduction in computing time. 

Calculations for R = 50 were also carried out on a coarser grid with M = N = 26 
and Richardson h2 extrapolation was performed on the total circulation using the 
results from this coarse grid and the original grid. The result of this extrapolation 
was to  give a value of rT to within 0 5 %  of rT from the original grid, which gives 
further confidence in these results. 

During the numerical integration two different trajectories were calculated in the 
(2, y)-plane for varying time. These were firstly the point of local maximum vorticity, 
and secondly the path of the fluid particle (Xp, Y,) which was originally a t  the centre 
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0 10 20 30 40 50 
1 

FICUHE 3. The variation of the total vorticity in the flow field for the case of a no-slip 
boundary for various values of R: -.--.-, R = 50; - - -, 100; -, 150. 

of the vortex a t  t = 0. This second trajectory is calculated by solving the equations 

subject to X,(0) = x,,(O), Yp(0)  = ~ ~ ( 0 ) .  
We present results of the calculations described above, for both a no-slip boundary 

and a stress-free boundary, in the form of vorticity distributions across the flow-field 
for various values of t ,  the variation of the total vorticity with t ,  and vortex 
trajectories across the flow-field. 

Consider first the no-slip boundary. With the initial vortex position a t  ( 1 ,  2), and 
vortex strength of unity in our dimensionless variables, there is a vortex sheet formed 
a t  the boundary within which the total vorticity is -0.295. These regions of intense 
vorticity diffuse as t increases, and move owing to their mutual interaction. This is 
illustrated well in figure 2, where lines of constant vorticity are shown for various 
values of increasing t .  We note that there is evidence of a sweeping up of negative 
vorticity from the wall region into the main body of the fluid, but we can report that, 
within the range of values of R that  we have considered, flow separation from the 
wall does not take place. We also see, from this figure, that  the total vorticity 
diminishes quite quickly as vorticity from the two regions diffuses; indeed the wall 
region may be thought of as a strong sink for the positive vorticity associated with 
the original vortex. This decay of total vorticity, as a function oft ,  is shown in figure 
3 for various values of R, for which the initial asymptotic form is given by (3.2). Notc 
that, as R increascs, the total vorticity decays less rapidly, which is to be expected 
since diffusive effects decrease as R increases. Finally, for this no-slip case, we show 
in figure 4 various trajectories in the flow field. Thus we show the path traced out 
as t increases by the point a t  which the vorticity has a local maximum; this may be 
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FIGURE 4. Trajectories in the flow field for the case of a no-slip boundary with (a )  R = 50, ( b )  R = 100. 
-, position of maximum vorticity ; - - -, the path of the particle initially coincident with 
the vortex; -.-.- , the inviscid trajectory. On each trajectory positions a t  various values oft 
are indicated. 
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FIGURE 6. As for figure 3, but now for a zero-stress boundary. 

compared with the trajectory of the line vortex, starting a t  ( 1 , Z )  at time t = 0, in 
an inviscid fluid, which is also shown. In addition we show the particle path for that 
particle of fluid which was at the point (1, 2) a t  the initial instant t = 0. I n  the early 
stages of the fluid motion these three trajectories all coincide, with that coincidence 
maintained for a longer period as R increases. Of particular interest is the fact that ,  
although the vortex centre moves, in the early stages, towards the boundary, it 
eventually moves away, or ‘rebounds’, from it .  

For the case of a zero-stress boundary we present the same flow characteristics in 
figures 5-7. The same features are present, but now in a weaker form owing to the 
absence of the region of intense negative vorticity a t  the no-slip boundary. Thus, 
although the boundary, a t  which 5 = 0, still acts as a sink of vorticity, as indeed does 
the line of symmetry, this is relatively weak and the vorticity decays much more 
slowly, as may be seen in figure 5, and more cxplicitly in figure 6. In  figure 7 we again 
show the three trajectories defined above and see clearly the tendency for them to 
coincide as R increases. This is quite marked in this case when there is only mild 
interference due to the presence of the boundary. We again note that the vortex centre 
eventually begins to move away, or rebound, from the boundary with the point x, 
of minimum approach increasing as K increases. It is this phenomenon of rebounding 
of the vortex centre from the boundary in both the no-slip and zero-stress cases which 
is one of the most striking features of the results which we have obtained, and we 
now discuss its significance in relation to the work of others. 

Papers by Dee & Nicholas (1968) and Tomhach et al. (1975) have reported on 
flight-test observations of trailing vortices produced by an aircraft flying close to the 
ground in which the vortices after initially travelling towards the ground began to 
rise, or rebound, from it. Laboratory experiments designed inter alia to examine this 
phenomenon have been carried out in air by Harvey & Perry (1971), in water by 
Barker & Crow (1977) and in both air and water by Wickcns (1980). 

In  the experiments of Harvey & Perry, for which R = 0(104), a vortex was shed 
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FIGURE 7. As for figure 4, but  now for a zero-stress boundary. 

behind a half-span wing in a wind tunnel with a moving floor. From their total-head 
surveys across the flow they deduce that when the vortex is sufficiently close to the 
tunnel floor flow separation is induced and a secondary vortex is responsible for the 
rebound of the main vortex. Numerical solutions of the unsteady boundary-layer 
equations obtained by Walker (1978), in which an  inviscid line vortex translates with 
uniform speed parallel to a fixed boundary, and at a finite distance from it,  exhibit 
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singular behaviour after a finite time, which is interpreted as an erupt~ion of the flow 
from the boundary. This is in accord with the observations of Harvey & Perry. 

The experiments of Barker & Crow were carried out in a water tank with a specially 
designed vortex generator from which the vortex pair was propelled vertically 
upwards. Again the experiments were carried out a t  Reynolds numbers O(104). This 
configuration allowed the interaction with either a no-slip or zero-shear-stress 
boundary to be studied depending upon whether or not a rigid plane boundary was 
introduced a t  the otherwise free surface. The rebound phenomenon was observed not 
only from the rigid surface but also from the free surface for which the explanation 
cannot involve flow separation. Barker & Crow conjecture that the difference between 
observation and that which is predicted by an inviscid theory involving line vortices 
may be reconciled by the introduction of a finite core size into the inviscid vortex. 
However, Saffman (1979) shows, within the framework of inviscid theory, that  it is 
not possible to explain the rebound phenomenon by finite core size. He observes 
however that since the rebound occurs for rigid or free surfaces an explanation based 
upon inviscid theory should be possible. We return to this point below. 

The experiments of Wickens (1980) were carried out in both air and water. Few 
details of the experiments are given by him, and in particular it is not possible to  
deduce the Reynolds numbers of the flows. However, in common with the experiments 
described above, the vortices are seen to rebound from the rigid surface to which they 
were propelled. 

We return now to our own results and pay particular attention to the rebound 
phenomenon, which is clearly demonstrated in figures 4 and 7 .  The first point we note 
is that  the Reynolds numbers a t  which our calculations have been carried out are 
at least two orders of magnitude lower than those reported in the experiments. 
However, we believe that apart from the occurrence of flow separation, which is not 
a feature associated with the stress-free boundary anyway, the results for R = O( lo2) 
exhibit most of the features observed in the experiments at higher Reynolds numbers. 
Consider first the case of a no-slip boundary. The occurrence of flow separation, which 
does not take place within our range of Reynolds numbers, as predicted theoretically 
by Walker (1978) and observed by Harvey & Perry (1971) must clearly have a 
dramatic effect upon the flow field, and will certainly induce a rebound of the incident 
vortex. However, even in the absence of separation the viscous displacement effect 
of the no-slip boundary, which is first apparent a t  O{( t /R) i }  in the asymptotic 
development of 5 2.1, and may be inferred from the illustrations of the flow 
development in figure 2 ,  is sufficient to force the vortex away from the boundary. 
For the zero-stress case there is no such effect, and viscous effects are only significant 
a t  the boundary after a finite time when vorticity has diffused from the neighbourhood 
of the vortex to it. Thus not only are the trajectories associated with the rebounding 
quantitatively different in the two cases but a qualitatively different explanation 
from that advanced for the no-slip boundary must be sought. We believe that the 
explanation still involves viscous effects as follows. In  the initial stages of the motion, 
it can be seen from figure 5 that the point of maximum vorticity, the path of the 
fluid particle which was originally coincident with the line vortex, and the line-vortex 
trajectory for an inviscid fluid are all coincident. After a finite time, which increases 
with increasing Reynolds number or decreasing diffusive effects, these trajectories 
diverge. The zero-stress boundary a t  which 6 = 0 acts as a sink of vorticity. Thus, 
as vorticity diffuses up to the boundary and is lost, so the point a t  which the vorticity 
is a maximum divorces itself from the original fluid particle and now lies further away 
from the boundary than that particle. As this diffusive process accelerates so this 
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effect becomes enhanced until eventually the position of maximum vorticity is seen 
to move away from the boundary or rebound. There is a concomitant effect upon 
the fluid particle which was originally coincident with the line vortex. With the 
position of maximum vorticity now further away from the boundary than this 
particle, there is a tendency for it to be swept forward of the point of maximum 
vorticity under the velocity field associated with the vorticity, and ultimately, a t  the 
higher Reynolds numbers, to be swept from its more forward position to one which 
is also slightly further from the boundary than the point of maximum vorticity itself. 
All these features are apparent in figure 7, from which it is also of interest to  note 
that in this case the three trajectories diverge simultaneously, which may be 
contrasted with the case of a no-slip boundary, which further emphasizes the 
displacement effect in that case. We can also see from figure 7 that  the point a t  which 
the vortex centre is a t  its minimum distance from the boundary increases as the 
Reynolds number increases, which is what we would expect; in the experiments of 
Barker & Crow it  is about x = 4. We also note, that in all cases that we have calcu- 
lated, the three trajectories only begin noticeably to diverge when the total vorticity 
in the flow field has been reduced by about 20 yo. The mechanism which we have 
suggested as being responsible for the rebound of the vortex from a zero-shear-stress 
boundary will also, of course, operate in the case of a no-slip boundary, where i t  will 
reinforce the viscous displacement effect. In conclusion we re-affirm our view that 
the rebounding of a vortex pair from a plane boundary, even when the boundary is 
a free surface, is essentially a viscous phenomenon. 

The authors are indebted to Mr J. H. B. Smith, RAE, Farnborough, for helpful 
discussion, and to SERC for financial support in the form ofa  studentship for A. J.P. 
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